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Absbaet. This paper studies a generalization of Ihe a priori implication EGF, meaning of 
course EF=E, in the quantum logic 9(X)  of all projectors. The new definition can be 
applied also to new pairs of events, being based on the indistinguishability of some events 
when considered from the standpoint of a (fixed) state p .  The mathematical theory of factor 
Boolean algebras, on which this extension is based, is clarified. 

1. Introduction 

In the framework of quantum mechanics (QM) a new form of Boolean (hence essentially 
classical) logic has emerged: the so-called consistent quantum representations of logic 
introduced and elaborated by Omnes (1992). This form of logic is founded on merging 
three basic concepts of QM: euenls (mathematically projectors; they are essentially the 
same as quantum propositions), SIates (mathematically statistical operators), and the 
unitary evolution operator of the system. Evidently, the ‘quanlum representations of 
logic’ are in conceptual complexity far beyond ordinary quantum logic (Beltrametti 
and Cassinelli 1981, Gudder 1979). 

This state of affairs serves as the motivation for revisiting s/a/e-dependen/ impfication 
(Omnes 1988) in this article. It merges only events and states without evolution. 

There is a twofold physical motivation for defining state-dependent implication (as 
is done in section 3): 

(i) the ’consistent quantum representations of logic’ mentioned utilize an elabora- 
tion of this concept; 

(ii) some aspects of two-subsystem composite systems (discussed in appendix I )  
imply that the mentioned definition of state-dependent implication is physically relevant 
from the point of view of some performable experiments. (More about this near the 
end of section 3.) 

In the next section we give the necessary mathematical concepts of quantum logic 
for this study. 

2. Boolean algebras and factor algebras in quantum logic 

Mathematically, quantum logic is the set of projectors Y(j(P) (in the given separable 
Hilbert space #, the state space of the quantum system) and its’special structure 
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(Beltramelti and Cassinelli 1981, Gudder 1979). It contains Boolean algebras, but it is 
not usually one itself. 

A priori or absolute or state-independent implication is well understood mathemati- 
cally: two projectors E and Fstand in the order relation E S F ,  by definition, if 

EF= E ( l a )  

R(E)S R(F) ( 1 4  

or equivalently 

in terms of the ranges of the projectors (that are subspaces of S). 
Absolute implication E<F(as a binary relation) determines almost the entire mathe- 

matical structure of P(X) (Beltrametti and Cassinelli 1981). 
The relation at issue is an order relation, i.e. it has the properties of reflexivity 

( E < E , , V E E ~ ( X ) ) ,  transitivity (if E g F a n d  FGG, E, F, GE.P(X), then E G G ) ,  and 
antisymmetry (if E‘GF and FSE,  E , F @ ( X ) ,  then E=F). Hence, the structure 
{ P ( X ) ,  <} is endowed with upper and lower bounds. (If ESF,  then F is an upper 
bound of E, and E is a lower bound of F.). 

Quantum logic P(X)  is a complete lattice, i.e. any subset of P(X)  has a least upper 
bound (l.u.b., also called supremum or join and denoted by ‘ v ’) and a greatest lower 
bound (g,l.b., also called infimum or meet and denoted by ‘ A ’ ) .  Moreover, P ( X )  is 
an orthoco,nplementedcomplete lattice, i.e. for each EEF’(X), one has E’s 1 -E,  such 
that 

ESFimplies F’. SE’. 

Actually, there is a gradual strengthening of lattices: if a set is closed with respect 
to finite ‘ v ’  and ‘ A ’  operations (i.e. with respect to these operations in any finite 
subset), then we have a lattice. If the set is closed with respect to the two c-operations 
(i.e. with respect to ‘ v ’  and ‘ A ’  in all at most countably infinite subsets), then we are 
dealing with a u-lattice. Finally, if there is no limitation on the power of the sets, then 
we have a complete lattice. 

In  terms of subspaces (ranges of projectors), the join is equivalent to ‘spanning’, 
i.e. to finding the minimal subspace containing the subspaces from the given family. 
The meet is the same as intersection. There is a duality between these two operations 
(with respect to orthocomplementation ‘1’) 

VdS@(X)  ( V , ~ E ) ~ = A , ~ E ~  

V d G 9 J ( X )  (A,#  E ) ~ =  V , @ E ~ .  

and vice versa 

These are the so-called rules of Morgan. They establish a duality of join and meet with 
respect to orthocomplementation. 

The lattice .P(X) has a maximal element 1 and a minimal element 0. One has 

VEE,P(X) EVE’=I E A EI = o .  
The lattice P(X) has a number of other properties. They will not be made use of 

in this study. 
If one thinks of the structure of 9 ( X )  in terms of the operations ‘v’, ‘A’ and ‘l’, 

they determine, in their turn, the absolute implication relation ‘g’, because E g F i f  and 
only if E A F= E, and if and only if E v F= F. 
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Three elements E, F, G of @’(%Ea) form a distributive triple if the equalities 
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E A  (Fv G ) = ( E A F )  V ( E A  G )  E v ( F A  G )  =(EvF) A (EvG) 
hold, together with the other four equalities obtained by cyclical permutation of E, F, 
G. If and only if every one of the triples of a given sublattice of 9 ( X )  is distributive, 
one speaks of a distributiue sublattice. 

If a sublattice of @’(A?) is distributive and orthocomplemented (i.e. closed with 
respect to ‘l’), then it is called a Boolean subalgebra. On account of the mentioned 
gradation of lattices, one speaks also of a-Boolean subalgebras and of complete Boolean 
subalgebras 

Every two elements E, F of a Boolean subalgebra I are compatible or commutative: 
EF=FE. 

In terms of the operations this means that 

and the projectors G, H ,  I are orthogonal to each other ( E  is orthogonal to Fif  E< p). 
In case of orthogonality one can replace ’v’ by ‘+’, and ‘A’ by multiplication. 

Conversely, every compatible subset of P(X)  (i.e. every subset, every two elements 
of which are compatible) is a subset of a Boolean subalgebra, or, as one puts it, is 
couered by one of the latter. (cf theorem 3.10 on p49 in Gudder 1979). Since the 
intersection of any family of Boolean subalgebras is a Boolean subalgebra, there is a 
unique minimal Boolean subalgebra that covers a given commutative set of projectors 
(the latter ‘spans’ the former, as one can say). All anaEogous claims.hold for U-Boolean 
subalgebras and complete Boolean subalgebras. 

The fact that any commutative set of projectors is covered by a Boolean subalgebra 
makes it clear that @’(A?) can be viewed as consisting of Boolean algebras. Since 
commutativity is non-transitive, for a given projector E there may exist two other 
projectors F and G such that they both commute with E, but do not commute with 
each other. Then { E ,  F}  and { E ,  G )  span two distincf Boolean subalgebras. Thus, any 
projector belongs to non-denumerably infinitely many distinct Boolean subalgebras of 
9W). 

One can view P ( 2 )  as obtained by ‘pasting’ Boolean algebras on top of one anofher. 
By this one means embedding (i.e. injecting isomorphically) a Boolean subalgebra of 
one such algebra into another of them (to define the ‘intersection’ of the two Boolean 
algebras), so that the union of the two, though no longer a commutative set, is part of 
@’(A?). 

Every complete Boolean algebra is necessarily a o-Boolean algebra and a Boolean 
algebra. Every a-Boolean algebra i s  a Boolean algebra. In general, there are Boolean 
algebras that are not U-Boolean ones, and there are a-Boolean algebras that are not 
complete ones. But separability of the Hilbert space A? implies that there are no u- 
Boolean algebras in the quantum logic .9’(X) that are not complete Boolean algebras. 
(We note that the Hilbert space of ordinary quantum mechanics is indeed separable.) 

The last claim follows from the fact that in every non-denumerable set {E,n;m~Af} 
(c@’(A?)) (‘M’ being an index set) there exists an at most denumerable subset 
{ E t , E z , .  . . } c { E , . : t n ~ M }  such that 

3G, H, IEO H = E A F  E = G v H  F = H v I  

m 

(see proposition 3 in Herbut 1984). 
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We turn now to facfor Boolean algebras. Since group theory is better known to 
theoretical physicists than the theory of Boolean algebras, it might be useful to point 
out that a factor Boolean algebra is the counterpart of a factor group; an ideal is the 
analogue of an invariant subgroup. 

An ideal A is a non-empty subset of a Boolean algebra B that has two properties 
(Sikorski 1964): 

(i) if E, FEA, then also (EvF)EA; 
(ii) if E E W ,  FEA, and E S F ,  then also E E A .  
On the other hand, as is well known, an equivalence relation satisfies, besides 

reflexivity and transitivity, also the symmetry requirement. (In P(X), for example, this 
means that if E and Fare equivalent, then so are F and E.)  Any equivalence relation 
breaks up the set in which it is defined into classes (non-overlapping subsets, the union 
of which is the entire set). The set of classes is called the quotient sef, and is denoted 
as the set divided by the equivalence relation. 

Every ideal A in W defines an equivalence relafion - A ,  as follows (Sikorski 1964): 

E-*F ifboth(E~F')EA and (E'AF)EA. (2) 

The quotient set W/-A  is a Boolean algebra if one defines the operations in it via 
arbitrary class representatives. In other words, denoting by [,??I the equivalence class 
(element of the quotient set) to which E (E@) belongs, one defines for all E, F E @ :  

[E] v [F] = [Ev F ]  [ E ]  A [ F ]  - [ E A  F ]  =[EF]  [E]' [El]. (3) 

Note that E is an arbitrary element of the class [a, and that the structure of the 
quotient set is 'inherited' from the elements (in the classes). It is easy to see that the 
operations in .?3/yd are well defined (i.e. consistently defined) by (3). 

The Boolean algebra B/yA is called the factor Boolean algebra corresponding to 
the ideal A. (Similarly, a factor group corresponds to a given invariant subgroup.) It 
is denoted by @/A. 

One should note also that Boolean implication 'G', 'inherited' by a Boolean factor 
algebra B/A from the absolute implication in the initially given Boolean algebra @, 
does not go via an arbitrary class representative (in contrast to the Boolean operations). 
More precisely, one has: 

Leniina 1.  If E S F ,  then [E]S[F]. Conversely, if [E]G[F], then 3: E ' E [ E ]  and F'E[F] 
such that ESF'. 

Proof. I f E S F ,  thenEF=E,and [E]A[F]=[EF]=[E]. Hence,[E]S[F]. If[E]S[F], 
then [E]A[F]=[E]. Further, [EF]=[E]. Thus, puttingE-EF, F'=F, onehas E'F'= 
E', i.e. E'GF'. 0 

3. The definition of state-dependent implication 

We begin to investigate physically and mathematically state-dependenl implication E<,F 
of an event F by an event E in an arbitrary given state p. Tentatively, one may define 
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this relation by 

Tr F(EpE,‘Tr Ep) = 1 (4) 
both for compatible and incompatible events E and F (commutative and non- 
commutative projectors) if one excludes the set 

Pob{E:TrEp=O) (cP(X) )  

of events that are ‘impossible’ in the state p. 

The event E occurs in the state p in an ideal ~vuy. i.e. by the Liiders selective change of 
state p+(EpE/Tr Ep) (Luders 1951, Messiah 1961, p 333). Immediately after this, the 
event Fis measured in some way (no evolution is allowed to take place). Relation (4) 
then requires the event F to be certain (‘statistically’, i.e. in the state (EpEITrEp), 
which determines the statistics at issue). 

Relation (4) is not necessarily transitive, i.e. one may have ES,Fand F<,Gwithout 
having EGnG. This is illustrated (making use of incompatible events) in appendix 2. 

If one confines oneself to making use of (4) within a given Boolean subalgebra 1 
of events (any two events are compatible in it), then, as proved in appendix 3, one does 
have transitivity. One has only to achieve reflexivity, and then relation (4) is a preorder 
(in &?\(In Po)) (Birkhoff 1940, see explanation below). 

Restriction to a Boolean subalgebra I in using (4) is natural in quantum logic 
because every quantum-mechanical observable A (Hermitian operator in X), when 
viewed as a given spectral measure EA: BR+P(X), i.e. as a o-homomorphism of the 
U-Boolean algebra BR (called the a-field of Bore1 sets BR on the real axis R )  into 
quantum logic .9(E), has a range 

One may interpret (4) physically as follows: 

{EA(BR):BREIR} (cP(X))  

that is necessarily a U-Boolean subalgebra (and hence a Boolean subalgebra) in P(X‘). 
And vice versa, for every given a-Boolean subalgebra of P ( E ) ,  there exists a (non- 
empty) set of observables each having the given U-Boolean subalgebra as the range of 
its spectral measure. (Any two observables in this set are non-singular functions of each 
other.) 

On account of commutation under the trace, the assumed commutativity of E and 
F i n  the given Boolean algebra I, and idempotency, one can rewrite (4) (equivalently) 
as follows: 

Tr EFp =Tr Ep ( 5 )  

for Efor which Tr Ep>O, i.e. on (.@\(InPo)). 
If Tr Ep=O, then necessarily also Tr EFp=O. This is an immediate consequence of 

the fact that Tr Ep=O holds if and only if Ep=O (proved in appendix 4), and of the 
commutation of E and F. Thus, ( 5 )  without restriction on the choice of E, i.e. with 
validity on the entire I, is equivalent to (4). (More precisely, on ( I n P o )  ( 5 )  is an 
identity, whereas on (I\(.% n .q0)) it is equivalent to (4).) 

In order to extend our tentative definition (4) to the entire given Boolean subalgebra 
I, we complete our tentative definition as follows. 

Definition I .  Let I be a given Boolean subalgebra of quantum logic 9(2), and let p 
be a given quantum state (statistical operator). Then two events (projectors) E, FE$ 
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stand in the binary relation of state-dependent inp[icalion, which we write as E G F ,  if 
( 5 )  is valid. 

Thus, we have E<,F if the probability of E is the same as that of the coincidence 
event EF. One should note that if Tr Ep = 0, i.e. if the event E is ‘statistically impossible’ 
in the state p, then for every FEB, we have ES,F. 

The binary relation given by our definition has both the property of reflexivity and 
that of transitivity. As mentioned, it establishes a preorder (Birkhoff 1940) between E 
and F. This relation is a generalization of an order relation. 

Unlike an order relation, a preorder like state-dependent implication ‘S,,’ does not 
have the property of antisymmetry. In our case this means that there may exist two 
distinct events Eand Fsuch that E<,Fand F<,E. Thus, on account of the confinement 
to the fixed state p. such events ‘imply’ each other, and one cannot physically distinguish 
them. 

What is more, the entire study in this article will show that pl~y&z[ indisfiin- 
guishability of some events is a t  the heart of state-dependent implication. 

Mathematically, a preorder (like ‘Go’) always determines an equivalence relation 
(we write it  as ‘-; in our case) in the following way: 

Definition 2. Let ~$3 and p be given. Two events E, F E @  are in the state-dependent 
equivalence relation, i.e. E-, F, if 

both ES,F and FS,E (6) 

hold. 
The equivalence relation ‘-,’ gives rise to the quotient set a/-,. 
I f  ‘-+’ is an arbitrary given preorder in B, and ‘-4 is the equivalence relation 

induced by it  (cf definition 2 as an example), then the order ‘4 induced in the quotient 
set a/-+ goes via an arbitrary class representative. More precisely, [ E ] + [ F ]  if and 
only if E-tF.  This is so also in the special case ‘+’E‘<,,’. 

One should note that this is quite different in the case of an arbitrary factor Boolean 
algebra B/A, in which an order relation is induced by the absolute implication ‘<’ in 
B (cf lemma 1 above). 

One should note that if one defines 

@o= { E :  EEB, Tr pE=O} = B  n Po 

and symmetrically 

B1 = { E :  EGB, Tr Ep= I }  

then Bo and 3, are equivalence classes with respect to ‘-,’. (This is proved in appendix 
5 . )  The following lemma clarifies the relation between absolute implication and state- 
dependent implication. 

Lemma 2. The absolute implication E S F  is valid if and only if E<,F holds true in 
every quantum state p. 

Proof. That ESFimplies ES,F for every p is obvious from ( la)  and definition 1. The 
converse claim is seen to be valid by taking p=I w ) ( w [ .  Then Tr EFp=Tr Ep boils 
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and this is valid for every I yl)c&, ( y l l  y)= 1. Then, as is well known, we must have 
EF=E. U 

That state-dependent implication is actually a weakening of the absolute one is clear 
from the following evident corollary. 

Corollary 1. If E<F, and p is an arbitrary given state, then also E<,F. 

One may rightly object to our initial definition (4) of state-dependent implication 
that its physical interpretation is, at first glance, restricted to ideal occurrence of the 
event E, in the state p. This is a high idealization, almost impossible to achieve in the 
laboratory. Thus, the concept at issue seems to be threatened by lack of physical 
motivation for its study. 

Nevertheless, as was mentioned in the introduction, there is a special case when a 
clear and realistic motivation can be established: the case of composite systems (see 
appendix 1). 

The important thing to notice is that state-dependent implication holds in this case 
for any kind of measurement: ideal, repeatable non-ideal and non-repeatable (Busch et 
al 19911, in which the occurrences of the subsystem events ( E l @ I )  and of (lo&) in 
a state p12 of the composite system take place (cf appendix 1). Since realizability (in 
the laboratory) increases as we move from left to right along the mentioned 3-tuple of 
possible (individual-system) measurements’(they are less and less idealized), in this case 
state-dependent implication is experimentally checkable. 

As was pointed out, state-dependent implication ‘Qpl, being a preorder in a given 
Boolean subalgebra I of the quantum logic P(X) of the system, defines an equivalence 
relation ‘-,’ in I that breaks up the latter into classes of physical/y indistinguishable 
events (in the apriori given state p), 

There is only one way that a preorder in 1 can be a kind of implication: if it ‘inherits’ 
this from absolute implication (that is defined in a state-independent way in P ( 2 ) ) .  By 
this I mean that the state-dependent implication E<,F should be due to the fact that 
in the equivalence classes of E and of F there exist events E’ and F’, respectively, such 
that E‘<F‘ (implication in the absolute sense). Then the state-dependent ‘implication’ 
of F by Ecomes from the fact that F‘ is implied by E’, but neither is E distinguishable 
from E’ in p, nor is F distinguishable from F‘ in this state. 

By a suitable mathematical theorem we show in the next section that this simple- 
minded and rough idea is the right intuitive basis for state-dependent implication. 

The mathematical realization of this ‘inheritance’ goes as follows: the quotient set 
I/-, is a factor Boolean algebra when the structure of 1 is naturally (i.e. via an 
arbitrary representative) transferred into the quotient set (Sikorski 1964). 

4. Mathematical investigation of state-dependent implication 

We now prove that every statistical operator p in X defines a factor Boolean algebra 
B/wP in any given Boolean subalgebra I of quantum logic 8(2) via the state-depend- 
ent implication ‘gp) or rather the equivalence relation ‘-p) it gives rise to. 
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Theorern 1. Let $9 be an arbitrary given Boolean subalgebra of the quantum logic 
9(9) of a separable Hilbert space 2, and let p be an arbitrary given statistical operator 
in X.  Let, finally, ‘-pl be the equivalence relation in B given rise to by p (cf definitions 
2 and 1). Then the equivalence class [O] to which the zero projector belongs ([O] =Bo, 
cf section 3) is an ideal A in 8. Further, the equivalence relation defined by the latter 
(in the sense of ( 2 ) )  coincides with ‘-,’. 

Proof: 

shown in appendix 6 that 
(a) Let Qo be the null-projector (the one projecting onto the null space) of p. It is 

[O]=Bo={E:E<Qo}. (7) 

If E, FEB, ESQo,  F<E, then, on account of transitivity, also FSQo. If E l ,  E2eB0, 
and F=E, vE, ,  then, since Qo is a common upper bound of ( E , ,  E 2 } ,  it is an upper 
bound also of the least upper bound F. Hence, F<Qo. Thus, [O] (=A) is an ideal, as 
claimed. 

(b) Let E, FEB, and E-*F. Then (E-EF), (F-EF)eA. Hence, one can write 

Tr(E- EF)p = 0 = Tr(F- EF)p 

implying 

Tr Ep=Tr EFp = Tr Fp 

or, in view of definitions I and 2: 

ESP FS, E i.e. E-,F. 

(c) Let E, FEB, and E-,F. Then, by definition 2, we have E<,FS,E, and this, 
in turn, by definition 1, means that TrEp=Tr EFp=TrFp. But then (E-EF), 

0 (F-EF)EA, and thus we derive E-aF. 

Corollary 2. The factor Boolean algebra B/A is non-rriuiul, i.e. %?/A#.@, if and only 
if p is singular. 

Pro05 We have non-triviality if and only if A contains at least one non-zero projector. 
It is obvious from (7) that this is the case if and only if the null-projector QO of p is 
non-zero. U 

Thus, if we have a non-singular state p, the state-dependent implication ‘<p) it gives 
rise to is actually the same as absolute implication ’S’ that was U priori present in B, 

Theorem 2. The order ‘S,’ that the preorder ‘6; (determined by a given statistical 
operator p in B, cf definition I )  induces in coincides with the (Boolean) implica- 
tion ‘<’ in the Boolean algebra B/A (=B/-,, cf theorem 1). 

Proof: 
(a) Let E, FEB, and [E] S,[F]. Then E<,F, implying 

Tr Ep = Tr EFp 
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(see definition I and ( 5 ) ) .  But then also 
Tr Ep = Tr E( EF)p and T r E F p = T r  (EF)Ep  

which mean that E<,EF, and EFQ,E, i.e. E-,EF. Now, 

[ E ]  A [ F ]  5 [ E A  F ]  = [EF] = [ E ]  

which means that [ E ] d [ F ] .  
(b) Let E, F E B ,  and [ E ] < [ F ] .  Then [ E ] A [ F ] = [ E ] ,  i.e. [ E F ] = [ E ] .  This means 

that EF-,E, implying E<,EF, i.e. Tr E = T r  E(EF)=Tr  EF. Hence, EQpF,  and 
[El  QP [Fl. 0 

If we have two states p and p‘ such that the null-projector of the former implies 
that of the latter, i.e. if 

Q o Q Q b  
then, as seen from (7), 

A G A  

and, as is easily shown, the factor algebra B/A can also be obtained from B / A  because 
the classes of the former consist of classes of the latter. (The classes corresponding to 
A are larger than those corresponding to A.) 

We obtain the largest classes when p is a pure slate: p~ 1 w)(  yI ,  because then Qo = 
I -  I y)( V I .  This, of course, implies that we have the largest family of pairs of projectors 
E, F E B  such that 

EQ,F though NOT E Q F  

i.e. pairs of new (state-dependent) implications 

Corollary 3. If E-,F, then there exist E ‘ E [ E ] .  and F’e[F] such that E’QF‘. 

Proof: We put E’EEF, and FzF. In the proof of theorem 2, part (a). it was shown 
U that E‘-,E. Finally, EFQF is obvious. 

Since we have proved in theorem I that the two equivalence relations ‘yP’ and 
coincide, corollary 3 can be viewed as an immediate consequence of lemma 2. 

Thus, state-dependent intplicat ion is ‘inheiited’fiom absolute implication on account 
of the contraction of events into classes of indistinguishable events (with respect to p )  
determined by the equivalence relation -, (cf definition 2). 

5. A gain in methodology 

We have accomplished our programme, having shown that statedependent implication 
is ‘inherited’ from absolute implication due to indistinguishability in p via the mathe- 
matical ‘mechanism’ of a suitable factor Boolean algebra. 

Nevertheless, a methodological question lingers on. Namely, it is evident that any 
preorder like ‘SP) in 1 consists of the following two concepts: an equivalence relation 
like ‘-I)) in 1, and an order like ‘dp) in .!Z/-,. (By ‘consists’ I mean not only that 
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the preorder induces the equivalence relation and the order, but also, conversely, an 
equivalence relation and an order in the quotient set determine, in their turn, a preorder 
in the initial set, of course, the one that determines them ‘back’.) 

The question arises if one can decide, w i h ~ u t  decomposing a given preorder in B 
into equivalence relation plus order, whether it actually amounts to the Boolean implica- 
tion in a factor Boolean algebra $/A. 

An affirmative answer to this question is known in the mathematical literature for 
the general case of classical probability theory (Omnes 1988, R h y i  1970). We re-derive 
it here for the special case of a Boolean algebra of projectors in X ,  and utilizing, as 
we have so far, the structure in 9(X).  Our aim is, of course, an attempt at completeness 
of presentation. 

Definifion 3. Let a be a Boolean subalgebra of quantum logic 9(X‘), and let ‘< be 
the absolute implication in it. We call a preorder ‘4 in 93 an ‘implicalion’ (meaning by 
this an extension of absolute implication ‘<’ to possible new pairs of projectors) if the 
induced equivalence relation ‘-_’ (cf definition 2 mutaris mulandis) makes the equiva- 
lence class IO]  of the zero projector P=O an ideal A, if -+=-A, and if the induced 
order ‘1 in B/-- amounts to the absolute implication in B/A (=a/--). 
Theorem 3. A preorder ‘-2 in B is an implication f u n d  only f i t  satisfies the following 
three relations in B :  

(i) Whenever E G F  holds, so does E-tF. 
(ii) If E+F, then F1+E1. 

(iii) If E - + F a n d  E+G, then E + ( F A G ) = F G .  

Proof. Given in appendix 7. 

Lemnza 3. I f  (ii) is valid, then (iii) is equivalent to: 
(iii)‘ If E-G. F-G, then ( E v F ) - + G .  

Proof: The claims follow immediately from the Morgan rules, i.e. from the duality of 
0 

Theorem 4. Let tli be an arbitrary Boolean subalgebra of 9 ( X ) ,  and p an arbitrary 
statistical operator. Then ‘G,,’ (cf definition 1) is an implication. 

Proof. Given in appendix 8. 

meet and join with respect to orthocomplementation in a Boolean algebra. 

The proof of theorem 3 turns out to be lengthy, that of theorem 4 rather short. 
Nevertheless, there is a methodological gain: the laborious proof establishes a very 
general result (theorem 3), which is, so to say, a part of classical Boolean algebra 
theory. Hence, methodologically, the right starting point of our physical investigation 
actually should have been whether the given preorder ‘Gp’ in 93 does, or does not, satisfy 
the criterion for an implication (given in theorem 3). The answer is easily obtained. 

Appendix 1. Two-subsystem composite systems 

Let &2=.%@% be the state space of an arbitrary two-subsystem composite system 
(e.g. of a two-particle system, or of one particle with orbital and spin degrees of freedom, 
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etc). Let, furthermore, p 1 2  be an arbitrary (mixed or pure) state (statistical operator 
in XI*). Finally, let El and F2 be subsystem events (projectors in 8 and in P2, 
respectively). 

Just as in the general case of compatible events, the coincidence event (El@F2) need 
not be interpreted as simultaneous occurrence of the two events, it can also be inter- 
preted as occurrence in (immediate) succession: first (E1@1), then, immediately after, 
(1  @F2). For this inteq-retation we need a predictable change of state in the occurrence 
of the former event, and we are back at ideal occurrence and relation (4). However, 
there is a difference. 

Now one can write, after multiplication with and division by the expression 
(Trll(E~@ l)p12} (which is required to be positive, cf (4)): 

Tr12(EI@F2)p12= {Tr12(El@ I)p12} x {Tr2 F2[(Tr12(El@ 1)pl2)-l Trl(El@ 1)p121}. 
Hence, 

Tr12(EI@F2)p12= {TrI2(E,@ I)pI2} x {Tr2 F2py’] 

&)= {Trl2(E]@ l)p12}-’ T ~ I ( E I @  I)p12 

(A.1) 
where 

can be viewed as the conditional state of subsystem 2 after the occurrence of the event 
(El@]) in the state p12. 

This interpretation is based on three facts: 
(i) The operator p g )  is positive: 

VI v)2~.%: (vlp?’l vh= { T r d E 1 0  I)PIz}-’ T~Iz(EI 01 v)~(vI~)p~~>O 
and obviously has trace equalling one. 

(ii) The projector F 2 ~ 9 ( X 2 )  is arbitrary. hence, as is well known, it determines 
(uniquely) the statistical operator p y )  through the standard quantum-mechanical prob- 
ability prediction Tr2 F2p?’ (the second factor on the RHS of (A.1)). 

(iii) Viewing p12 as defined on a Boolean subalgebra of the quantum logic 9(z2), 
quantum-mechanical prediction reduces, as is well known, to classical probability. 
Then, Tr2 F2&) can be interpreted as the definition of conditional probability as usual 
in classical probability theory. 

Coming back to state-dependent implication, the relation ‘E, GP,?F2’, in view of ( 5 )  
and (A.]), amounts to 

T~II@I@ I ) ~ I ~ x T ~ ~ F z ~ ~ ’ = T ~ I ~ ( E I ~  I)p12 

i.e. putting aside the trivial case TrI2(El0 l)pl2=0, to 

TTIAEIO I)p12>0 Tr2 F2pY’ = 1 . 
I n  words: the relation ‘EI&,,~FZ’, for a given first-subsystem event (EI@I) having 

a positive probability in the given composite-system state p12, amounts to the fact that 
the given second-subsystem event F 2  is statisticaliy certain in the conditional state that 
comes about as a consequence of the occurrence of (E1@l) in plz. This is so in any 
measurement of this event. (More about this in Herbut 1986, subsection 2.1.) Hence, 
this is checkable in the laboratory. 

lllustralion. We take the well known Bohm case of an Einstein-Podolsky-Rosen two- 
particle spin state (Bohm 1952, Einstein el a1 1935). After having abstracted away the 
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spatial degrees of freedom, one has: 

lQ)12=(l/2)1~z(l+, u>1l-, u)z-l-. U > l l + ,  u>2) 

where U is an arbitrary unit vector in R3 (the spin up and down states are taken along 
it). It is well known that however one chooses U, the given state vector I @ ) l 2  has one 
and the same form. (On this fact is based the Einstein-Podolsky-Rosen paradox. We 
will not discuss it here.) 

I t  is easy to see that taking, for example, E1=[+,u)l(+,~~l, F z = ~ - , u ) z ( - , u ~ z ,  
p l Z = l Q ) l ~ ( Q I  12.  one has state-dependent implication El SPIIFZ.  

Thus, there is sufficient physical motivation for a detailed mathematical investigation 
of state-dependent implication. 

Appendix 2 

If E, F, G E ~ ( * ) ,  ES,F, F<,G, and EG#GE, then it does not necessarily follow that 
E Sp G. 

Proof. We take the more restricted definition (4) of 'S i ,  which boils down to 

0 < Tr Ep = Tr EFEp. (A.2) 

Consider a Hilbert space of at least five dimensions with the following orthonormal 
(sub)basis in it: 

{11),12), 13x14>,15>1. 

We define: 

E - l l X l l  +l3)(3l 
G=Ig)(gl +Ig')Wl 

18) =2-?1 1) + 12)) 

I v> = 2-'%> + 15) ). 

F s  I 1 )(I I + 1w21 

where 

Ig') =2-'/2(13) + 14)) 

finally, p = l v ) ( v l ,  where 

In order to test the validity of (A.2), we evaluate: 

Tr E p =  (VIE y r )  = I l (y r l  1)112= 112-1/22-'/2 ll ' =5 I 
Tr FP= (vlFlv)= IlFl v>ll2= 112~1~z1g)112=f 

Tr G p =  (V I  GI v )  = 112-"21g)112=i 

Tr EFEp= (wIEFEl w ) =  ( yry12-''22-'/21 1) =2-'2-1'22-1/2=' 4 .  

So far we can infer from (A.2) that E<,F, as claimed. Further, 

Tr FGFp= (vlFGF1 v )  =2-'/'(yrlg) =2-1/22-"z=L 2 .  
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Hence, also F<,G, as claimed. Finally, 

Tr EGEp = ( V I  EGE] V) = 2-''22-"~2-''22-''2( 1 [GI 1) 
2 - L L - 1  =il(llg>l - 42-8 .  

Thus, it is not true that E&G. 0 

Appendix 3 

Let us first establish a few, perhaps not so well known, auxiliary criteria for statistically 
certain events. 

Lemma A . 1 .  Let p be a state, and p=C,w,li)(il (V i :  wi>O) an arbitrary decomposition 
of p into pure states. Then an event E is certain in p if and only if it is so in every pure 
state l i ) .  

Proof. Sufficiency is obvious. To prove necessity, one may argue as follows: 
Tr Ep=I * CiwiTrEl i ) ( i l=Z ,wi  => Ciw, ( l - ( i lE l i ) )=O * Vi: ( i I E l i ) = I .  CI 

Lemma A.2. An event E is certain in a state p if and only if E p = p .  

Proof. Sufficiency is obvious. To show that the condition is also necessary, we take a 
decomposition p=Z,w,li)(il (e.g. a spectral form of p ) .  According to lemma A.1, we 
have Vi: (il Eli) = 1. This implies for each value of i :  

0 (ilE'li)=O =. IIE1li)ljZ=O =. E l i ) = l i )  =. El i ) ( i l= l i ) ( i l  => E p = p .  

Lemma A.3. An event E is certain in a state p if and only if E p E = p ,  

Proof. Sufficiency is a consequence of commutation under the trace. By utilizing lemma 
A.2, necessity is seen to hold as follows: 

CI Tr E p =  1 =. E p = p  =. (as seen by adjoining) p E = p  =. E p E = p .  

Lemma A.4. Two commuting projectors E, F and a statistical operator p stand in the 
relation Tr E p  =Tr EFp (cf ( 5 ) )  if and only if 

EpE= FEpEF ('4.3) 
is valid. 

Proof. Sufficiency is seen by taking the trace of (A.3) and by making use of commuta- 
tion under the trace, of idempotency, and of commutation of E and F. 

Necessity for the Tr Ep>O case follows from relation (4) (equivalent to (5 )  in this 
case) and lemma A.3. If If Tr Ep=O, then also Tr EpE=O, and EpE=O (because no 
positive operator other than zero has zero trace). Then (A.3) is trivially satisfied. 0 

Now we come to the main result of this appendix. 
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Lernmn A.5. If E, F, G E B  ( d ( x P ) ) ,  where B is a Boolean subalgebra, and E<,F, 
F S ,  G, then necessarily EGP G. 

Proof. We make use of definition 1 and ( 5 ) ,  the latter in ils equivalent form EpE= 
FEpEF (cf lemma A.4). By assumption, we have 

EpE= FEpEF and FpF= GFpFG. 

Then 

EpE= EFpFE = EGFpFGE = GFEpEFG = GEpEG. 

Appendix 4 

An event E is ‘impossible’ in a state p if and only if Ep=O. 

Proof. According to lemma A.2, one has 

Tr E’p=l c> E1p=p c> Ep=O. 

0 

0 

Appendix 5 

Let p be an arbitrary given statistical operator, and B an arbitrary given Boolean 
subalgebraof9(#).Then3?o ( = { G : G E B , T ~ G ~ = O } )  andBl  (-{G:G€&’,TrGp= 
I } )  are equivalence classes with respect to -, (cf definition 2). 

ProoJ If and FE&’, then ( 5 )  is satisfied because, according to appendix 4, 
Tr Ep=O implies Ep=O, hence Tr EFp=Tr FEp=O. Thus, E<,F (cf definition I) .  In 
particular, if E, FeB0, then E-,F. Conversely, if EGPF, and FEB~, then also E E ~ ~ ,  
because (5) reads Tr EFp=Tr Ep, and Tr Fp=O implies Fp= 0, and hence Tr EFp= 
Tr E=O. In particular, if E-,F, and Fe%, then also E&. Thus, 80 i s  an equivalence 
class with respect to ‘--,’. 

I f  E E B ,  FEZ&, then ES-,F, because Tr Fp= 1 implies (cf lemma A.2) Fp=p, hence 
Tr EFp=Tr Ep (cf definition 1 and (5)). In particular, if E, FE&’,, then E-,F (cf 
definition 2). 

Let E--,F, and EE&’,, FE&’. Then the relation E6,F (4) and lemma A.2 give 
F(EpE)=EpE. Further, on account of lemma A.3, EpE=p. Hence, F p = p ,  i.e.  FE^, , 

0 Thus, a, is an equivalence class with respect to ‘-j,’. 

Appendix 6. Proof of relation (7) 

[O] =&lo= { E :  E 6  Qo} 

where Qo is the null projector (or Q; is the range projector) of p .  
Let p=Z,rtli)(il be a spectral form of p with positive characteristic values r,. By 

assumption Tr Ep=O. Hence, Tr E1p= 1, and, on account o f  lemma A.2, E’p=p. 
Further, owing to lemma A.l, V i :  E’li)=li>, or qi )=O.  Since Q,f=&li)(il, 
EQ;=O, or EQ,,=E, i.e. E<Qo. 
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Appendix 7. Proof of theorem 3 

Suficiency. We assume that the preorder '4 in I satisfies the three relations given in 
the theorem. First, we have to show that 

A = { F  O-rF,  F-0 )  

is an ideal of I (see section 2). 
Let E, FEA. Then E-tO and F-0. hence relation (iii)' (cf lemma 3) implies: 

EvF-10 .  On the other hand, O+EvFas a consequence of O g E v F  (0 implies every 
element of 93) and of relation (i). Thus, E v F E A .  

Let E E I ,  FEA, and E<F. Then E+F (relation (i)). Since also F+O, transitivity 
of I+' gives E-0. Since also 0-E (consequence of O<E and of relation (i)), E e A .  
Thus, A is an ideal as claimed. 

Next, we have to prove that both E+F and F-E are valid in I if and only if EFL, 
E'FEA. 

We assume E-+Fand F-E. One has E P = ( E A F ' ) < F '  implying, on account of 
relation (i), E F L + p .  Analogously, EF'+E. Now, E+F and transitivity of '4 give 
EF'-+F. Then relation (iii) entails E p + ( F ' h F ) = O .  Since also 0-EFL (due to 
O<Ep), we have EF'EA. Symmetrically, FE'EA. Thus, '-+' implies '-A'. 

We assume that EFL, E'FeA. Evidently, 

E = EFL + EF= EFL v EF. (-4.4) 
Further, Ep+O+E'F-F. (The last step is due to E'FgFand to relation (i).) Trans- 
itivity of '+' implies 

EFL + F. (A.5) 
On account of EFgF and (i), one has EF+F. This relation and (AS), due to (A.4) 
and relation (iii)' from lemma 3, give E+F. Symmetrically, one proves F+E. Thus, 
'-A' implies '-_'. Altogether, the two equivalence relations coincide, as claimed. 

Next we have to show that also the two induced order relations in I / A  (=I/-+) 
coincide. 

Let [ E ] < [ F ]  (elements of B/A). Then [ E ] A [ F ] = [ E ] = [ E F ] ,  i.e. Hence, 
E(EF)'EA, implying E(EF)'+O. Further, E(EF)'=E(I -EF) =EFL. Thus, EFL+O. 
Since also O+F, transitivity entails E p + F .  Further, E F S F  gives EF-F (due to 
relation (i)). Finally, relatipn (iii)' (from lemma 3) and (A.4) entail E-F. Thus, 
[ E ] + [ F ] ,  as claimed. 

Let [ E ] + [ F ] .  Then E+F. Since E-E, and EF= E A F ,  relation (iii) implies E+EF. 
On the other hand, EFg E, and hence EF+E (relation (i)). Thus, [ E ]  = [EF] = [ E A  F ]  = 
[ E ]  A [ F ] ,  i.e. [ E I S  [ F ] ,  as claimed. 

Necessity. We assume that '-_' and '-*' coincide, and [ E ] < [ F ]  if and only if 

Let EgF.  Then EF=E, hence [ E ] A [ F ] = [ E ] ,  and [ E ] < [ F ] .  Then also [ E l - [ F ] ,  
implying E+F. Hence relation (i) is valid. 

Let E-F. Then [El+[Fl, and also [E]<[F] .  Hence [FI1<[E]', i.e. [pl<[E1l, 
and [F']+[E']. Finally, p-+E'. Thus, relation (ii) is valid. 

Let E+Fand E-G. Then, [ E ] - + [ F l  and [ E l + [ G ] .  Hence [ E ] < [ F ]  and [ E ] g [ G ] ,  
implying [ E ]  < ( [ F ]  A [GI)  = [FG].  Then also [ E ] - r [ F G ] ,  which finally implies E+FG. 

0 

I E I - W I .  

Thus, relation (iii) is valid. 
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Appendix 8. Proof of theorem 4 

If EGF,  then EF=E, and T I  EFp=Tr Ep. Hence, E<,F (cf  definition 1 and (5)). 
Thus, relation (i) of theorem 3 is valid for 'Gp). 

If E<,F, then Tr  E p = T r  EFp. Hence, 

T r  F'.p=Tr( 1 - F ) p  = Tr( 1 - F -  E +  EF)p=Tr(  1 - F)( 1 - E ) p = T r  P E ' p .  

Thus, GP E l ,  and also relation (ii) of theorem 3 holds for 'bp). 

FEpEF= EpE and GEpEG= EpE. 

Finally, we assume E<,Fand EG,G. Then, on account of lemma A.4, we have 

Further, 

FGEpEFG= G(FEpEF)G= GEpEG= EpE. 

Thus, also relation (iii) of theorem 3 is valid for 's&'. 
Repeated use of lemma A.4 finally gives EGpFG. 

0 
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